Что это рычаг в физике? принцип работы рычага. виды рычагов

Функционал рычага передней подвески

Рычаг передней подвески — базовая единица современных «многорычажек». Различают следующие типы устройств.

  1. Подрамник: жёсткая основа с несколькими крепёжными отверстиями. Необходим для последующей установки поперечных штанг.
  2. Продольный рычаг: обеспечивает фиксацию колеса при движении в направлениях по оси Y, то есть вперёд и назад. Крепится к кузову и ступичной опоре. Корректная настройка продольных элементов снижает степень так называемого рыскания. Кроме того, за счёт данных компонентов обеспечивается фиксация положения кузова в моменты резких торможений и ускорений.
  3. Поперечный рычаг: обеспечивает необходимый диапазон движения кузова во время маневров по оси Х. Иными словами, поперечные компоненты отвечают за максимально допустимые крены кузова.

В современных многорычажных системах действующими элементами выступают не столько отдельные рычаги, сколько их блоки из трёх элементов.

Различают два типа: А-соединение и Н-соединение.

Также нужно упомянуть разделение на верхние рычаги и нижние. Такая градация актуальна при рассмотрении устройства передней подвески. Функциональные задачи элементов:

  1. Верхний рычаг передней подвески: фиксация рулевого кулака и соединение последнего с колесом. Такой жёсткий тип сочленения прочно фиксирует колесо в вертикальном положении.
  2. Нижний рычаг передней подвески: частично компенсирует функционал верхнего собрата; также он сохраняет стойку типа «McPherson» в допустимом диапазоне колебаний.

“Trade in” или меняем авто “ключ в ключ”

Услуга “Trade in” подразумевает продажу автомобиля с пробегом, вырученные средства с которой идут в счет оплаты новой модели. Таким способом владельцу остается заплатить фиксированную сумму для того, чтобы пересесть в новое транспортное средство.

Обмен автомобилей “ключ в ключ” отличается от предыдущей услуги тем, что владелец меняет свой автомобиль на подходящую б/у модель при условии соответствующей доплаты.

Эти два относительно новых способа покупки автомобилей исключают риск мошенничества, который распространен в случае, если авто продается “с рук” на рынке. Сделки оформляются ведущими авто компаниями в соответствии с действующим законодательством РФ.

Составной рычаг

Составной рычаг представляет собой систему из двух и более простых рычагов, соединённых таким образом, что выходное усилие одного рычага является входным для следующего. Например, для системы из двух последовательно связанных рычагов, если на входное плечо первого рычага приложена сила F1{\displaystyle F_{1}}, на другом конце этого рычага выходное усилие окажется F2{\displaystyle F_{2}}, и связаны они будут с помощью передаточного отношения:

i1=F1F2{\displaystyle i_{1}={\frac {F_{1}}{F_{2}}}}.

При этом на входное плечо второго рычага будет воздействовать такое же усилие F2{\displaystyle F_{2}}, а выходным усилием второго рычага и всей системы будет F3{\displaystyle F_{3}}, передаточное отношение второй ступени будет равно:

i2=F2F3{\displaystyle i_{2}={\frac {F_{2}}{F_{3}}}}.

При этом механический эффект всей системы, то есть всего составного рычага, будет вычисляться как отношение входного и выходного усилия для всей системы, то есть:

i=F1F3=F1F3F2F2=F1F2F2F3=i1i2{\displaystyle i={\frac {F_{1}}{F_{3}}}={\frac {F_{1}}{F_{3}}}{\frac {F_{2}}{F_{2}}}={\frac {F_{1}}{F_{2}}}{\frac {F_{2}}{F_{3}}}=i_{1}i_{2}}.

Таким образом, передаточное отношение составного рычага, состоящего из двух простых будет равно произведению передаточных отношений входящих в него простых рычагов.


Составной рычаг в общем случае, состоящий из n простых рычагов

Такой же подход решения можно применять и для более сложной системы, состоящей, в общем случае из n рычагов. В этом случае в системе будет присутствовать 2n плеч. Передаточное отношение для такой системы будет вычисляться по формуле:

iC=FR1F(2n−1)−P=FR1F23⋅F23F45⋅…⋅F(2n−2)−(2n−1)F(2n−1)−P=B2B1⋅B4B3⋅…⋅B(2n)B(2n−1){\displaystyle i_{C}={\frac {F_{R1}}{F_{(2n-1)-P}}}={\frac {F_{R1}}{F_{23}}}\cdot {\frac {F_{23}}{F_{45}}}\cdot …\cdot {\frac {F_{(2n-2)-(2n-1)}}{F_{(2n-1)-P}}}={\frac {B_{2}}{B_{1}}}\cdot {\frac {B_{4}}{B_{3}}}\cdot …\cdot {\frac {B_{(2n)}}{B_{(2n-1)}}}},

где:

  •  Bi{\displaystyle \ B_{i}} — это i-ое плечо системы;
  •  F(i−1)i{\displaystyle \ F_{(i-1)i}} — сила, передаваемая с плеча (i-1) на плечо i;
  •  iC{\displaystyle \ i_{C}} — передаточное отношение всей системы.

Как видно из формулы для этого случая также верно, что передаточное отношение составного рычага равно произведению передаточных отношений входящих в него элементов.

Назначение и принцип работы

Машина, совершая очередной маневр, неизбежно начинает накреняться. Тем, кто уже знаком со школьным курсом физики и не забыл его с течением времени, хорошо известно, что крен происходит в противоположную сторону тому, куда стала поворачивать машина.

Это явление хорошо известно, равно как и известны негативные последствия такого явления. Так, колеса, которые не подверглись крену, практически теряют сцепление с дорогой. Чем это грозит? Разумеется, это не может не сказаться на управляемости, которая мгновенно спадает до нулевой отметки, а это уже грозит возникновением аварийной ситуации.

Не стоит забывать и о том, что дороги, особенно в нашей стране, не так уж близки к идеалам, и даже асфальт норовит преподнести водителю неприятный сюрприз в виде ухаба или ямы, которые могут негативно сказаться на состоянии подвески. С этой целью подвеска должна не просто эффективно бороться с кренами и не позволять машине потерять сцепление с дорогой, но и умудряться при этом «проглатывать» ямы и не позволять ударам от колес переноситься на кузов и салон.

Что дает подобная работа стабилизатора? Во-первых, машина частично или полностью встает на четыре колеса, и их сцепление с дорожным полотном становится максимальным. Во-вторых, при этом значительно компенсируется та нагрузка, которая может ложиться на подвеску в моменты, когда при подобном крене приходится иметь дело с неровной дорогой.

Оптимальный режим нагрузок и правила эксплуатации компонентов

Рычаги могут ходить очень долго при соблюдении рекомендаций по эксплуатации автомобиля. Детали очень боятся ударных нагрузок, особенно, если изношены другие элементы подвески. Например, вы попадаете колесом в яму на большой скорости при просроченных амортизаторах, изношенных сайлентблоках и проставках. Скорее всего, рычаг лопнет и приведёт подвеску в негодность. При этом водителю придётся менять не только повреждённый компонент, но и сочленённые с ним детали.

На машинах используется два типа изделий — стальные рычаги и легкосплавные рычаги.

Первые более неприхотливы в обслуживании. Главная задача автовладельца — установить корректные межсервисные интервалы и периодически обслуживать деталь: осматривать, чистить от ржавчины, менять расходные материалы подвески и уплотнители.

Легкосплавные изделия обеспечивают снижение массы автомобиля, при этом сохраняя нужные показатели жёсткости и энергоёмкости. Однако легкосплавные части эксплуатируются по принципу «отработали — выкинул». К сожалению, они практически не пригодны к текущему и капитальному ремонту. Инженеры стараются компенсировать этот недостаток увеличенным ресурсом запчастей.

Особенности конструкции треугольных рычагов

Конструкция треугольного рычага возникла в процессе работы над созданием упрощенной подвески для недорогих автомобилей. Основная особенность треугольного рычага в том, что он работает как в поперечном направлении, в котором он установлен, так и в продольном. Имея три точки крепления (две точки для крепления к кузову, одна для крепления к кулаку), рычаг может удерживать амортизационную стойку как в поперечном, так и в продольном направлении. Появление такой конструкции обеспечило возможность применения меньшего количества деталей в подвеске, сделав ее более дешевой. Именно поэтому независимая передняя подвеска на треугольных рычагах так популярна.

От слова к делу

Итак, основной функциональный элемент стабилизатора — это стержень, оборудованный торсионным механизмом. Но как стабилизатор связан с подвеской машины? Как он к ней закрепляется? Оказывается, крепежные элементы у стабилизатора действительно имеются, и в технической литературе, да и у простых автомобилистов, они называются стойками и работают по принципу рычага.

Стойки, которые располагаются с правой и левой стороны стержня, крепят его к устройствам стоек, которые связывают раму машины с передней ступицей и пружинным механизмом. Правый и левый продольные рычаги служат для того, чтобы подвеска имела ограниченный ход в вертикальном и горизонтальном направлении. К примеру, если левый рычаг в данный момент времени максимально растянут, и авто поднято с левой стороны, то правый, благодаря наличию ограничителя хода, максимально компенсирует и восстанавливает положение кузова.

Как левый, так и правый рычаги могут быть верхними и нижними и иметь разное устройство. Таким образом, с левой и противоположной стороны рычаги располагаются попарно и имеют аналогичный тип крепления. На этом моменте стоит остановиться подробнее, поскольку классификация разновидностей верхнего и нижнего рычагов кроется именно в том, сколько точек крепления к раме машины они имеют.

К примеру, нижние рычаги в большинстве своем имеют треугольный тип. В чем преимущества подобного нижнего рычага и секрет его популярности? Дело в том, что такая конструкция позволяет делать рычаг полностью универсальным. Обычно его устанавливают поперек, и в качестве продольного элемента подвески, как правило, такая деталь не используется.

Такой рычаг представляет собой две детали, которые располагаются параллельно друг другу и связаны стальной поперечиной. Каждая деталь обладает крепежным шарниром, который выполняется из особо прочного металла, для того чтобы быть способным переносить серьезные перегрузки. Кроме того, шарниры обычно обильно смазываются. Это позволяет добиться максимального снижения трения и при этом значительного срока службы, ведь металл будет истираться с несколько меньшей скоростью, и до замены сможет пройти больше километров.

Что можно сказать о ресурсе работы такого механизма? Производитель утверждает, что конкретной цифры, после которой необходимо производить обязательную замену, не существует. Однако практика показывает, что стоит производить диагностику не реже, чем раз в три месяца, а срок службы рычага в среднем составляет от 60 до 100 тысяч километров пробега.

Назначение рычага подвески

Назначение рычагов подвески чаще всего зависит от места расположения. Рычаг может быть поперечным, продольным, верхним и нижним. В зависимости от расположения они выполняют разные функции.

Основная особенность треугольного рычага в том, что он работает как в поперечном направлении, в котором он установлен, так и в продольном

Например, задача верхнего рычага передней подвески – удерживать верхнюю часть рулевого кулака, не позволяя прикрепленному к нему колесу завалиться вбок во время движения. Нижний рычаг также частично выполняет эту функцию, помогая верхнему, но при этом он еще и контролирует нижнюю часть стойки МакФерсон, не позволяя ей раскачиваться. Продольные рычаги чаще всего применяются в конструкции задней многорычажной подвески и служат для удержания задних стоек в одном положении при разгоне и ускорении, когда на них воздействуют силы, направленные вдоль оси движения автомобиля.

Поперечный рычаг

Особенности эксплуатации рычагов подвески

В целом, рычаг подвески — неприхотливая и долговечная деталь, особенно, если он сделан из стали. Стальные рычаги, в отличие от легкосплавных, подходят для использования в течение нескольких циклов от ремонта до ремонта подвески. При ремонте рычага заменяют шаровую опору и сайлентблок (или два сайлентблока в случае с треугольным или простым продольным рычагом), а сама деталь отправляется на второй или третий срок службы. Легкосплавные же рычаги в большинстве случаев подлежат замене целиком, что увеличивает стоимость ремонта подвески, хотя и несколько упрощает его.

Причиной выходя рычага из строй обычно являются два фактора: механическое воздействие и коррозия

Причиной выходя рычага из строй обычно являются два фактора: механическое воздействие (попадание в яму, ДТП), приводящее к деформации рычага, и коррозия, которая, кстати, легкосплавным рычагам не грозит.

Дополнительно[править | править код]

  • Ориентация рычага, устанавливаемого на пол, не зависит от положения игрока — она случайна.
  • У выключенного рычага на стене ручка смотрит вверх, а у включённого — вниз.
  • У рычага на полу если ручка смотрит на север или восток, то он выключен; на юг или запад — включён.
  • Рычаг нельзя поставить на снег, лёд, стекло и листву.
  • На перевёрнутом рычаге может стоять блок песка. То есть, песок будет в воздухе стоять на рычаге. Это сделать сложно, но возможно.
  • Если у вас есть железная дверь, и с двух сторон стены у вас стоят рычаги, то чтобы открыть эту дверь вы используете рычаг с одной стороны. Но чтобы закрыть дверь рычагом с другой стороны вам нужно поставить его в положение второго рычага, т.е. сделать его активным, и только потом закрывать.
  • Рычагом можно изменять направление закруглённых рельсов на перекрёстке.
  • Рычаг – это своеобразный Т-Триггер.

“Trade in” или меняем авто “ключ в ключ”

Услуга “Trade in” подразумевает продажу автомобиля с пробегом, вырученные средства с которой идут в счет оплаты новой модели. Таким способом владельцу остается заплатить фиксированную сумму для того, чтобы пересесть в новое транспортное средство.

Обмен автомобилей “ключ в ключ” отличается от предыдущей услуги тем, что владелец меняет свой автомобиль на подходящую б/у модель при условии соответствующей доплаты.

Эти два относительно новых способа покупки автомобилей исключают риск мошенничества, который распространен в случае, если авто продается “с рук” на рынке. Сделки оформляются ведущими авто компаниями в соответствии с действующим законодательством РФ.

Как выгодно обменять авто с пробегом

Чтобы гарантировать законность услуги обмена авто с пробегом и ее объективную стоимость, процесс купли-продажи стоит проводить в проверенном автоцентре. Здесь клиенту предложат:

  1. Диагностику старой модели, на основании которой будет определена ее стоимость;
  2. Выбор машин на обмен, абсолютно новых или обладающих чистой историей пробега: все автомобили проходят криминалистическую экспертизу, потому в автосалоне никогда не будут продавать автомобиль с “темным прошлым”;
  3. Юридическое сопровождение сделки: клиент заключает нотариально заверенный договор и при необходимости может воспользоваться кредитными услугами банка-партнера автосалона;
  4. Оперативность услуги: клиенту не нужно искать покупателей для своего ТС, он лишен необходимости улаживать вопросы с ГАИ или банком. Перечисленные функции — задача автоцентра.

Таким образом при минимальном наличии документов возможно купить автомобиль улучшенной комплектации в течение от одного до трех дней. Услуга обмена авто с пробегом дает возможность регулярно менять автопарк владельца, приобретая его лучшие модели.

Конструкция современного рычага подвески

Рычаг – литая продолговатая деталь из легкого сплава с ребрами жесткости, расположенными в продольном направлении, и с приливами на обоих концах. Один конец снабжен цилиндрическим приливом, в который вставлен, вернее, впрессован сайлентблок – деталь, служащая прокладкой при креплении рычага к кузову, раме или подрамнику. Второй конец снабжен кольцеобразным приливом, служащим местом крепления шаровой опоры. Конструкция рычага может варьироваться в зависимости от инженерного решения подвески. Например, прилива под шаровую опору может не быть, так как он выполнен на корпусе самой шаровой опоры, которая прикрепляется к рычагу при помощи болтов и гаек. Кроме того, в задней многорычажной подвеске нередко применяются рычаги с цилиндрическими приливами под сайлентблок на обоих концах.

Пионерами отказа от стальных рычагов были компании Volkswagen и Subaru, начавшие активно использовать легкие сплавы в подвеске своих автомобилей еще в 90-е годы

В подвеске автомобилей, сделанных до начала 2000-х годов, как правило, применялись стальные рычаги. При этом они могут представлять собой либо полую коробчатую структуру (так называемую квадратную трубу), либо структуру с тремя стенками, две из которых служат ребрами жесткости (так называемый швеллер). В более современных конструкциях подвески наблюдается тенденция постепенного отказа от использования стали, с целью снижения как общего веса автомобиля, так и неподрессоренной массы. Пионерами отказа от стальных рычагов в массовых моделях были компании Volkswagen и Subaru, начавшие активно использовать легкие сплавы в подвеске своих автомобилей еще в 90-е годы.

Сайлентблок.

Принцип действия

Схема рычага. В равновесии F1D1=F2D2{\displaystyle F_{1}D_{1}=F_{2}D_{2}}

Принцип работы рычага является прямым следствием закона сохранения энергии. Чтобы переместить рычаг на расстояние Δh1{\displaystyle \Delta h_{1}} сила, действующая со стороны груза, должна совершить работу равную:

 A1=F1Δh1{\displaystyle \ A_{1}=F_{1}\Delta h_{1}}.

Если посмотреть с другой стороны, сила, приложенная с другой стороны, должна совершать работу

 A2=F2Δh2{\displaystyle \ A_{2}=F_{2}\Delta h_{2}},

где Δh2{\displaystyle \Delta h_{2}} — это перемещение конца рычага, к которому приложена сила F2{\displaystyle F_{2}}. Чтобы выполнялся закон сохранения энергии для замкнутой системы, работа действующей и противодействующей сил должны быть равны, то есть:

 A1=A2{\displaystyle \ A_{1}=A_{2}},
 F1Δh1=F2Δh2{\displaystyle \ F_{1}\Delta h_{1}=F_{2}\Delta h_{2}}.

По определению подобия треугольников, отношение перемещений двух концов рычага будет равно отношению его плеч:

H∣╱H∤=ϝ∤╱ϝ∣{\displaystyle \mathrm {H} \shortmid \diagup \mathrm {H} \nshortmid =\digamma \nshortmid \diagup \digamma \shortmid }, следовательно
 F1D1=F2D2{\displaystyle \ F_{1}D_{1}=F_{2}D_{2}}.

Учитывая, что произведение силы и расстояния от точки опоры до линии действия силы является модулем момента силы, можно сформулировать принцип равновесия для рычага. Рычаг находится в равновесии, если сумма моментов сил (с учётом знака), приложенных к нему, равна нулю. (Точнее, если векторная сумма моментов сил, приложенных к нему, равна нулю.)

Для рычагов, как и для других механизмов, вводят характеристику, показывающую механический эффект, который можно получить за счёт рычага. Такой характеристикой является передаточное отношение, оно показывает, как соотносятся нагрузка и приложенная сила:

i=F1F2=D2D1{\displaystyle i={\frac {F_{1}}{F_{2}}}={\frac {D_{2}}{D_{1}}}}.

Нужно отметить, что как и у любого механизма, у рычага полезная работа меньше полной. Например, у большинства рычагов коэффициент полезного действия (КПД) равен ~ 80 %. Остальные 20 процентов работы расходуются на преодоление силы трения и т. п.

В специальной теории относительности теория рычага существенно отличается от принятой в классической механике (парадокс рычага).

Особенности[править | править код]

Рычаги могут быть размещены на стене и полу на любом непрозрачном блоке (с 12w24a рычаги могут быть установлены на потолке).

Рычаг может быть в двух состояниях — в одном он не активирует красную пыль и механизмы, в другом — активирует (при активировании излучается эффект красной пыли). Эти состояния стабильны — их может поменять только игрок, нажав правой кнопкой мыши. Таким образом, рычаг — дешёвая (то есть создаётся из легко получаемых материалов) возобновляемая замена красному факелу в случае, если он используется как источник постоянного сигнала (например, включает электрические рельсы). Также рычаги используются как выключатели в схемах.

Рычаг является одним из пяти переключателей в игре на данный момент.

Принцип работы рычага

Познакомившись с вопросом, что такое рычаг в физике (это наипростейший механизм), перейдем к рассмотрению принципа, согласно которому с помощью рычага получается выигрыш в силе или в пути перемещения. Для этого вспомним, что в физике существует величина, которая называется моментом силы. Последний равен произведению плеча силы на модуль силы, то есть:

Где плечо силы d — это дистанция от опоры рычага до точки действия силы F.

Если вспомнить статику, то второе условие равновесия системы твердых тел в ней гласит, что система не будет совершать вращательного движения, если сумма всех n моментов сил в ней равна нулевому значению. То есть:

Прежде чем переходить к формулировке условия равновесия рычага, отметим, что момент силы, который стремится повернуть систему против часовой стрелки, является положительным. Противоположный ему момент будет отрицательным.

Выше показан рычаг, на который оказывают действие внешняя сила F и сила нагрузки R. Учитывая значение плеч сил и направления моментов, можно записать следующее равенство:

Откуда получаем условие равновесия рычага, полученное еще Архимедом:

Это условие говорит о том, что чем длиннее плечо dF, тем меньшую силу F следует приложить, чтобы поднять вес R. При этом высота подъема этого веса будет меньше, чем высота, на которую опустится плечо dF. Таким образом, при dF>dR получается выигрыш в силе, но проигрыш в пути. При обратном соотношении плеч получится выигрыш уже в пути, но силу F придется приложить большей величины, чем вес R.

Таким образом рычаг можно применять как для подъема тяжестей, так и для сообщения скорости телу весом R. Последнее раньше использовалось в катапультах.

Как выгодно обменять авто с пробегом

Чтобы гарантировать законность услуги обмена авто с пробегом и ее объективную стоимость, процесс купли-продажи стоит проводить в проверенном автоцентре. Здесь клиенту предложат:

  1. Диагностику старой модели, на основании которой будет определена ее стоимость;
  2. Выбор машин на обмен, абсолютно новых или обладающих чистой историей пробега: все автомобили проходят криминалистическую экспертизу, потому в автосалоне никогда не будут продавать автомобиль с “темным прошлым”;
  3. Юридическое сопровождение сделки: клиент заключает нотариально заверенный договор и при необходимости может воспользоваться кредитными услугами банка-партнера автосалона;
  4. Оперативность услуги: клиенту не нужно искать покупателей для своего ТС, он лишен необходимости улаживать вопросы с ГАИ или банком. Перечисленные функции — задача автоцентра.

Таким образом при минимальном наличии документов возможно купить автомобиль улучшенной комплектации в течение от одного до трех дней. Услуга обмена авто с пробегом дает возможность регулярно менять автопарк владельца, приобретая его лучшие модели.

Материал изготовления

Рычаг стабилизатора — это такая деталь, которая несет на себе колоссальные перегрузки. Такие перегрузки представить себе достаточно трудно, поскольку нагрузка при крене равна массе самой машины, умноженной в несколько раз. Что позволяет преодолевать такие перегрузки и при этом не выходить из строя раньше времени?

Во-первых, это достаточно толстая и усиленная рама, которая как раз предназначается для того, чтобы брать на себя львиную долю нагрузки при ударах и кренах. Рама выполняется из стали, которая дополнительно усиливается полыми внутри распорками, не позволяющими металлу деформироваться или растрескиваться.

Второй влияющий фактор — это, конечно же, материал, из которого выполняются элементы подвески различных размеров. Причем к таким элементам предъявляются повышенные и особенно строгие требования, которые не свойственны ни одному другому функциональному узлу машины. К примеру, здесь постоянно приходится иметь дело с неблагоприятной окружающей средой. Если пороги и рама машины в обязательном порядке покрываются антикоррозионным составом, который представляет собой герметичную и толстую пленку, то на рычаги такую пленку нанести уже не получится.

Первые рычаги, которые устанавливались на машины до середины девяностых годов, были выполнены из стали. Такое решение имеет несколько значительных преимуществ, которые, впрочем, остаются актуальными и на сегодняшний день. К примеру, сталь практически не подвергается коррозии, а потому имеет значительный срок службы. Кроме того, такой материал ремонтопригоден и вполне может пережить 3–5 циклов реставрации и восстановления, а затем вновь быть установленным и выполнять свои функции в полной мере.

Тем не менее в наши дни лидируют детали из облегченных сплавов. Взамен более низкой надежности такие детали меньшего размера позволяют машине двигаться быстрее и расходовать намного меньше топлива, чем в случае со стальными деталями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector