Двигатель внутреннего сгорания

Роторно-волновой двигатель имеет следующий принцип работы:

Как и в газовой турбине, газ в РВД перемещается между рабочими отсеками: от компрессора к ресиверу, далее в совмещенную или разделенную  камеру сгорания с камерой расширения, используя режим непрерывного течения  порций газа по каналам, при давлениях и температурах аналогично происходящих в камерах сгорания ДВС. Каждая порция газа, двигаясь в общем потоке, представляет из себя непрерывно изменяющийся в объеме, замкнутый капсулированный объем.

С началом вращения, винтовые поверхности ротора начинают открывать внутренние полости винтовых каналов компрессорного отсека, засасывая и них воздух двумя потоками, смещенными относительно друг друга на 180 градусов. За один оборот ротора в оба канала компрессорного отсека засасываются и отсекаются от впускного тракта по две порции воздуха. При дальнейшем повороте, каждая порция воздуха начнет самостоятельно перемещаться к центру двигателя, непрерывно сокращаясь в объеме за счет уменьшения шага и амплитуды самого витка. Процесс сжатия будет продолжаться до тех пор, пока все уменьшающийся объем со сжатым воздухом не подойдет к камере сгорания. В этот момент процесс внутреннего сжатия воздуха в компрессорном отсеке закончится, наступает следующий этап – выталкивание сжатого воздуха в камеру сгорания тыльной стороной витка, ближе других находящегося к центру ротора. Этот процесс сопровождается непрерывным распыливанием топлива в воздушном потоке с последующим его сгоранием в общей камере, куда и выталкиваются все порции воздуха. Для первоначального поджигания топливовоздушной смеси в камере устанавливается запальная свеча. После запуска дальнейшее поджигание смеси должно поддерживаться газами, оставшимися от предыдущих циклов в общей камере сгорания. Последние, с высокой температурой и давлением покидая камеру сгорания, заполняют на роторе винтовые каналы расширительных отсеков, расположенных по другую сторону от центра ротора (точки, где шаг и амплитуда угловых колебаний равна нулю). С поворотом последнего происходит увеличение объемов расширительных отсеков за счет чего и осуществляется рабочий ход. На момент максимального расширения, кромки наружных витков ротора открываются и газы сначала свободно, а затем принудительно выдавливаются в выпускной коллектор. Интервал выпуска отработанных газов из очередной камеры расширения составит 180 градусов. Часть полученной в цикле мощности возвращается телом ротора в компрессорный отсек.

На что тратиться полезная энергия?

Первый пункт здесь – это потери, возникающие непосредственно при горении топлива, ведь все топливо в двигателе никогда не сгорает, часть его улетает в выхлопную трубу. Эта часть, в среднем, составляет около 25%.

Следующим местом (точнее явлением), куда исчезает энергия, является тепло, выделяемое при горении. Возможно, кто-то из вас еще помнит со времен, проведенных на школьной скамье, что для получения тепла требуется энергия, соответственно, образуемое тепло – это есть потери энергии. Здесь стоит заметить, что тепла при работе двигателя внутреннего сгорания образуется с излишком, что требует внедрения серьезной системы охлаждения.

Далее, кроме тепла, выделяемого от горения, тепло выделяется и при самой работе двигателя, ведь все его части трутся, теряя тем самым часть своей энергии.

Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

Чем отличаются КПД бензинового и дизельного двигателя

В отличие от паровых механизмов, топливом для двигателей внутреннего сгорания служит бензин или солярка. Двигатели внутреннего сгорания бензиновый и дизельный имеют схожие конструкции. Однако образование топливовоздушных смесей у них происходит по-разному.

В карбюраторном агрегате элементы поршневой группы функционируют при сверхвысоких температурах. Соответственно, они нуждаются в более качественном охлаждении. При этом наблюдается большой расход тепловой энергии. Вследствие неэффективного рассеивания тепла в окружающей среде, понижается коэффициент полезного действия бензинового силового агрегата.

  • КПД бензинового двигателя равняется 25-30 %;
  • дизельного – 40 %;
  • с установкой турбонаддува достигает 50 процентов соответственно.

Роторно-поршневые тепловые двигатели обладают высоким КПД, его значение превышает 40%. Это намного выше бензиновых аналогов, но немного отстает от дизельных моторов.

Турбореактивные самолетные двигатели работают совершенно по другому принципу, который существенно отличается от автомобильных ДВС. Благодаря сравнительно высокому КПД, они пользуются большой популярностью в авиастроении. Чаще всего турбореактивные агрегаты устанавливаются на крупных лайнерах большой грузоподъемности.

Как написано в учебниках физики, чтобы найти КПД двигателя, нужно разделить значение выполненной работы на величину затраченной энергии. При расчете коэффициента полезного действия ДВС полезная работа делится на количество тепла, полученного при сгорании топлива.

Основные потери КПД в двигателях внутреннего сгорания происходят при:

  1. Неполном сгорании топлива в цилиндрах.
  2. Расходе тепла.
  3. Механических потерях.

При неполном сгорании эффективность снижается за счет выхода четвертой части объема топлива с отработавшими газами. Здесь потери КПД двигателя составляют почти 25%. Благодаря появлению инжекторов, работа топливных систем становится более эффективной, но не идеальной.

Часть тепловой энергии уходит на прогрев корпусных деталей двигателя, рабочих узлов, моторного масла, радиатора и пр. Тепло также уходит с выхлопными газами. На данном этапе потери КПД составляют не меньше 35 процентов.

Несмотря на смазывание трущихся поверхностей, энергия расходуется на преодоление сил трения. Это происходит при сопряжении таких элементов, как шатуны, цилиндры, поршни, маслосъемные, компрессионные кольца и т. д. При вырабатывании электричества генератор тоже отбирает немалую долю энергии двигателя. В результате механических потерь, КПД ДВС снижается еще на 20%.

КПД двигателя рассчитывается по специальным формулам, в которых участвуют показатели работы, энергии и потерь.

  1. Цилиндры оснащаются двумя впускными, а также двумя выпускными клапанами, вместо привычных конструкций в одном экземпляре.
  2. Свечи зажигания комплектуются отдельными катушками зажигания.
  3. Вместо обыкновенного тросика управления дроссельной заслонкой, используется электрический привод.

2.1 Общие сведения

В реальном ДВС преобразование тепловой энергии, выделяющейся при сгорании топлива, в механическую сопровождается комплексом сложных физико-химических и термодинамических процессов. Совокупность процессов периодически повторяющихся в полости цилиндра и составляют цикл двс.

Действительный цикл, состоящий из реальных, сложно протекающих процессов, очень трудно анализировать при помощи обычных термодинамических соотношений. Поэтому, чтобы оценить степень совершенства процессов, происходящих в двс и определить пути для улучшения использования тепла, принято действительные циклы сравнивать с теоретическими.

Замкнутые теоретические циклы в отличие от действительных процессов, происходящих в цилиндре двигателей, характеризуются следующими допущениями:

1. Циклы являются замкнутыми и протекают с постоянным количеством одного и того же рабочего тела. Нет процессов впуска и выпуска и обусловленные этим потери.

2. Процессы сжатия и расширения протекают адиабатически, т. е. без теплообмена с окружающей средой, с одинаковыми и постоянными показателями адиабат.

3. Состав и теплоемкость рабочего тела остается постоянным.

4. Подвод теплоты производится от постороннего источника только при постоянном объеме и постоянном давлении.

5. Отсутствуют какие-либо потери теплоты (в т. ч. на трение, излучение, гидравлические потери и т. п.), кроме отвода теплоты холодному источнику.

Практическое значение для поршневых двс имеют пять теоретических циклов:

1. Цикл с подводом теплоты при V=const, что примерно соответствует карбюраторному двигателю.

2. Цикл с подводом теплоты при P=const, что примерно соответствует компрессорному дизелю.

3. Цикл со смешанным подводом теплоты, что примерно соответствует дизелю без наддува.

4. Теоретический смешанный продолженный цикл с переменным давлением газов перед газовой турбиной.

5. Теоретический смешанный продолженный цикл с постоянным давлением газов перед газовой турбиной.

Что касается цикла Карно, состоящего из двух изотерм и двух адиабат, то он не может быть практически применим, т. к. получается незначительная мощность при очень высоких температурах и давлениях в цилиндре.

Рассмотрение и анализ теоретических циклов позволяет решить три задачи:

1. Оценить влияние различных факторов на ηt и Pt (термического КПД и среднего давления) и установить оптимальное значение этих факторов.

2. Провести сравнение различных теоретических циклов с точки зрения лучшей экономичности.

3.  Получить числовые значения ηt и Pt, которые могут являться критериями для оценки степени совершенства реальных двигателей.

Цикл со смешанным подводом теплоты является обобщающим, и мы начнём рассмотрение его:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector