Замена цилиндра сцепления: процесс и рекомендации по выбору детали

Рабочий цилиндр сцепления

Сцепление автомобиля являются узлом, который несет очень важную функцию – обеспечивает мягкое и безболезненное для автомобиля переключение передач.

Для чего нужен рабочий цилиндр сцепления?

Задача сцепления заключается в передаче крутящего момента от двигателя к трансмиссии, в разъединении трансмиссии от работающего двигателя на время, необходимое водителю для включения нужной передачи в коробке передач и обеспечении мягкого (без ударов и толчков) подключения трансмиссии обратно к двигателю.

Одной из основных деталей сцепления является рабочий цилиндр сцепления. Рабочий цилиндр сцепления создает механическое усилие на вилке сцепления, достаточное для выключения сцепления (разъединения дисков). Рабочий цилиндр сцепления расположен, как правило, на картере сцепления и состоит из следующих деталей: металлический корпус, стопорное кольцо, толкатель, штуцер, колпачок, поршень, тарелка, два уплотнительных кольца, шайба, пружина.

Этот несложный набор деталей собранные в единый узел преобразует давление тормозной жидкости в системе гидропривода сцепления в механическое усилие на толкателе, далее на вилке, а затем и на выжимном подшипнике сцепления. Зачем нужен в данном случае гидропривод, если можно обойтись мускульной силой ноги водителя? Ответ – для облегчения работы водителя при необходимости постоянно работать педалью сцепления.

Когда нужно заменить рабочий цилиндр сцепления?

Рабочий цилиндр сцепления является достаточно простым и надежным узлом. Однако, со временем, рабочий цилиндр сцепления изнашивается, поскольку в нем присутствует жидкость под давлением, а следовательно – уплотняющие элементы, которые могут потерять форму, повредиться из за попадания грязи.

Долговечность рабочего цилиндра сцепления изначально зависит от качества компонентов (самое главное – уплотняющих колец) и своевременной замены тормозной жидкости. В нормальных условиях качественный рабочий цилиндр сцепления может потребовать замены не ранее чем при пробеге 100 тыс. км. На износ рабочего цилиндра сцепления могут указать провалившаяся педаль сцепления, затрудненное включение передач, падение уровня тормозной жидкости.

Устройство и принцип работы ГЦС

Начнем с того, что гидравлическое сцепление состоит из пары цилиндров (главный  и рабочий цилиндр сцепления), которые позволяют работать гидроприводу сцепления. Что касается главного цилиндра, конструкция ГЦС и его принцип работы заключается в следующем:

  • усилие от педали сцепления через толкатель передается на шток. Далее поршень выдвигается, в результате происходит перекрытие клапана, в результате чего жидкость из той части цилиндра, где она сжимается, получает возможность вытекать в отдельный бачок;
  • сжатая в цилиндре жидкость проталкивается через штуцер, после чего происходит ее попадание в гидравлическую магистраль, по которой производится подача к рабочему цилиндру;
  • рабочий цилиндр воздействует на вилку, передавая на нее усилие. После того, как водитель отпускает педаль сцепления, поршень цилиндра возвращается обратно при помощи пружины.

Как видно, гидропривод сцепления работает аналогично другим системам (например, гидравлической системе тормозов), в основе которых лежит жидкость, которая под давлением почти не сжимается, однако происходит эффективная и быстрая передача усилия на исполнительные устройства.

Обратите внимание, при выборе новой детали нужно обязательно учитывать отдельные технические характеристики, способ крепления, подключения, наличие бачка в комплекте, материал изготовления корпуса, размеры, длину штока, диаметр штуцера и т.д. Другими словами, при выборе главного цилиндра на тот или иной автомобиль, нужно учесть ряд параметров и особенностей

Также рекомендуется  отдельное внимание уделять материалу изготовления. Дело в том, что цилиндры бывают как стальными, алюминиевыми или чугунными, так и пластиковыми (изготовлены из полимеров)

Другими словами, при выборе главного цилиндра на тот или иной автомобиль, нужно учесть ряд параметров и особенностей

Также рекомендуется  отдельное внимание уделять материалу изготовления. Дело в том, что цилиндры бывают как стальными, алюминиевыми или чугунными, так и пластиковыми (изготовлены из полимеров)

Главный тормозной цилиндр

Главный тормозной цилиндр является одним из основных элементов тормозной системы автомобиля, который преобразовывает усилие от ноги водителя на педали тормоза в давление гидравлической (тормозной) жидкости в тормозной системе.

Для чего нужен главный тормозной цилиндр?

Если говорить коротко, то задача главного тормозного цилиндра заключается в преобразовании усилия ноги человека, которое ограничено его физическими возможностями в давление гидравлической жидкости, достаточного, чтобы остановить как малолитражный автомобиль, так и большой джип или грузовик. Основные элементы главного тормозного цилиндра – корпус, резервуар для тормозной жидкости, поршни с толкателями, уплотнительные манжеты, возвратные пружины.

Не будем останавливаться на подробной конструкции главного тормозного цилиндра и этапах работы, т.к. для этого потребуется целая лекция. Скажем проще – главный тормозной цилиндр, совмещенный с вакуумным усилителем, помогает достичь высокого давления тормозной жидкости в системе. Это давление, изначально созданное ногой человека на штоке от педали тормоза, а затем многократно увеличенное вакуумным усилителем, используется затем на колесах для сжатия колодок. И понятно, что без главного тормозного цилиндра и усилителя не обойтись, т.к. силы ноги человека ни при каких обстоятельствах и конструктивных ухищрениях не хватит, чтобы создать давление, способное так сильно сжать колодки, чтобы многотонная машина быстро остановилась.

Главный тормозной цилиндр не только помогает человеку «давить» на тормозные колодки. Он регулирует, чтобы давление в системе разделялось на два отдельных направления (на два контура) для надежности (если в одном из контуров будет неисправность и тормоза не сработают, то автомобиль все равно затормозит, т.к. второй контур поможет).

Как часто менять главный тормозной цилиндр?

Главный тормозной цилиндр – достаточно сложный механизм и хотя он и его детали не являются быстроизнашивающимися, необходимость ремонта или замены главного тормозного цилиндра все-таки возникает. Причины могут быть разные – например износ деталей, которые отвечают за уплотнение механизмов, поскольку в главном тормозном цилиндре имеются движущиеся поршни, клапаны, присутствует рабочая жидкость под давлением. Долговечность главного тормозного цилиндра изначально зависит от наличия слабых мест в конструкции, от качества используемых компонентов, от соблюдения периодичности обслуживания тормозной системы.

На неисправность могут указать например падение тормозной жидкости в бачке, провалившаяся педаль тормоза и др. Главный тормозной цилиндр может быть ремонтопригодным (путем замены отдельных компонентов), а порой, при определенных неисправностях или особенностях конструкции главный тормозной цилиндр приходится менять в сборе.

Конструкция и принцип работы главных цилиндров сцепления

Типовая схема гидравлического привода выключения сцепления

Наиболее просто устроены ГЦС с вынесенным и установленном на корпусе бачком. Основу устройства составляет литой корпус цилиндрической формы, на котором выполнены проушины для монтажных болтов и другие детали. С одного торца корпус закрыт резьбовой пробкой или пробкой со штуцером для соединения с трубопроводом. Если корпус закрыт глухой пробкой, то штуцер располагается на боковой поверхности цилиндра.

В средней части цилиндра выполняется штуцер для соединения с бачком посредством шланга или посадочное место для установки бачка непосредственно на корпус. Под штуцером или в посадочном месте в корпусе цилиндра выполнено два отверстия: компенсационное (впускное) отверстие малого диаметра и перепускное отверстие увеличенного диаметра. Отверстия располагаются таким образом, чтобы при отпущенной педали сцепления компенсационное отверстие располагалось перед поршнем (со стороны контура привода), а перепускное — за поршнем.

В полости корпуса установлен поршень, с одной стороны которого располагается толкатель, связанный с педалью сцепления. Торец корпуса со стороны толкателя закрыт гофрированным защитным резиновым колпачком. При отжатой педали сцепления поршень отводится в крайнее положение расположенной внутри цилиндра возвратной пружиной. В двухпоршневых ГЦС используется два поршня, расположенных друг за другом, между поршнями находится уплотнительное кольцо (манжета). Применение двух поршней улучшает герметичность контура привода сцепления и повышает надежность работы всей системы.

Работают такие цилиндры следующим образом. Когда педаль сцепления отпущена, поршень под воздействием возвратной пружины находится в крайнем положении и в контуре привода сцепления поддерживается атмосферное давление (так как рабочая полость цилиндра связана с бачком через компенсационное отверстие). При нажатии на педаль сцепления поршень под воздействием усилия ноги движется и стремится сжать жидкость в контуре привода. При движении поршня компенсационное отверстие закрывается и давление в контуре привода повышается. Одновременно через перепускное отверстие жидкость поступает за обратную сторону поршня. За счет роста давления в контуре поршень рабочего цилиндра перемещается и двигает вилку выключения сцепления, которая толкает выжимной подшипник — сцепление выключается, можно переключать передачу.

В момент отпуска педали поршень в ГЦС возвращается в первоначальное положение, давление в контуре падает и сцепление включается. При возврате поршня скопившаяся за ним рабочая жидкость выдавливается через перепускное отверстие, что приводит к замедлению движения поршня — это обеспечивает плавное включение сцепления и возврат всей системы в первоначальное состояние.

Если в контуре происходит утечка рабочей жидкости (что неизбежно вследствие недостаточной плотности соединений, порчи уплотнений и т.д.), то нужное количество жидкости поступает из бачка через компенсационное отверстие. Также это отверстие обеспечивает постоянство объема рабочей жидкости в системе при изменении ее температуры.

Конструкция и работа цилиндра с интегрированным резервуаром для рабочей жидкости несколько отличается от описанной выше. Основу этого ГЦС составляет литой корпус, установленный вертикально или под наклоном. В верхней части корпуса выполнен резервуар для рабочей жидкости, под резервуаром расположен цилиндр с подпружиненным поршнем, а через резервуар проходит соединенный с педалью сцепления толкатель. На стенке резервуара может располагаться пробка для долива рабочей жидкости или штуцер для соединения с вынесенным бачком.

Поршень в верхней части имеет углубление, вдоль поршня высверлено отверстие малого диаметра. Толкатель установлен над отверстием, в отведенном состоянии между ними остается зазор, через который в цилиндр поступает рабочая жидкость.

Работает такой ГЦС несложно. При отпущенной педали сцепления в гидравлическом контуре наблюдается атмосферное давление, сцепление включено. В момент нажатия на педаль толкатель движется вниз, перекрывает отверстие в поршне, герметизируя систему, и толкает поршень вниз — давление в контуре повышается, и рабочий цилиндр приводит в действие вилку выключения сцепления. При отпуске педали описанные процессы выполняются в обратном порядке. Утечки рабочей жидкости и изменение ее объема вследствие нагрева компенсируются через отверстие в поршне.

Привод сцепления и его виды

Устройство сцепления

Привод предназначен для дистанционного управления сцеплением непосредственно водителем из салона. Нажатие на педаль сцепления напрямую воздействует на нажимной диск.

Известны следующие виды привода:

  • механический;
  • гидравлический;
  • электрогидравлический;
  • пневмогидравлический.

Наибольшее распространение получили первые два вида. На грузовиках и автобусах используется пневмогидравлический привод. Электрогидравлический устанавливают в машинах с роботизированной коробкой передач.

В некоторых автомобилях для облегчения управления применяется пневматический или вакуумный усилитель привода.

Механический привод

Механический или тросовый привод отличается простой конструкцией и невысокой ценой. Он неприхотлив в обслуживании и состоит из минимального количества элементов. Механический привод устанавливается в легковых и малотоннажных грузовых автомобилях.

Механический привод сцепления

К элементам механического привода относятся:

  • трос сцепления;
  • педаль сцепления;
  • вилка выключения сцепления;
  • выжимной подшипник;
  • механизм регулировки.

Трос сцепления, заключенный в оболочку, является основным элементом привода. Трос сцепления крепится к вилке, а также к педали, находящейся в салоне автомобиля. В момент выжимания педали водителем действие через трос передается на вилку и выжимной подшипник. В результате происходит разъединение маховика двигателя с трансмиссией и, соответственно, выключение сцепления.

В соединении троса и рычажного привода предусмотрен регулировочный механизм, обеспечивающий свободный ход педали сцепления.

Ход педали сцепления представляет собой свободное перемещение до момента срабатывания привода. Расстояние, пройденное педалью без особого усилия водителя при нажатии, и есть свободный ход.

Если переключение передач сопровождается шумом, а в начале движения наблюдаются небольшие рывки автомобиля, то необходима регулировка хода педали.

Зазор в сцеплении должен находиться в пределах 35-50 мм свободного хода педали. Нормативы этих показателей указаны в технической документации автомобиля. Регулировка хода педали осуществляется путем изменения длины тяги с помощью регулировочной гайки.

В грузовых автомобилях используется не тросовый, а рычажный механический привод.

К плюсам механического привода относятся:

  • простота устройства;
  • невысокая стоимость;
  • надежность в эксплуатации.

Главным минусом считается более низкий КПД по сравнению с гидроприводом.

Гидравлический привод сцепления

Гидропривод имеет более сложную конструкцию. К его элементам, помимо выжимного подшипника, вилки и педали, относится также гидравлическая магистраль, которая заменяет трос сцепления.

Схема гидравлического сцепления

По сути эта магистраль аналогична гидроприводу тормозной системы и состоит из следующих элементов:

  • главный цилиндр сцепления;
  • рабочий цилиндр сцепления;
  • бачок и трубопровод с тормозной жидкостью.

Устройство главного цилиндра сцепления напоминает устройство главного тормозного цилиндра. Главный цилиндр сцепления состоит из поршня с толкателем, расположенных одном в корпусе. Также к его элементам относятся резервуар для жидкости и уплотнительные манжеты.

Рабочий цилиндр сцепления, имеющий схожую с главным цилиндром конструкцию, дополнительно оснащен клапаном для удаления воздуха из системы.

Механизм действия гидропривода такой же, как и у механического, только усилие передается с помощью находящейся в трубопроводе жидкости, а не через трос.

Во время нажатия водителем на педаль усилие через шток передается на главный цилиндр сцепления. Затем за счет несжимаемого свойства жидкости в действие приводятся рабочий цилиндр сцепления и рычаг привода выжимного подшипника.

В качестве плюсов гидропривода можно выделить следующие его особенности:

  • гидравлическое сцепление позволяет передавать усилие на значительное расстояние с высоким КПД;
  • сопротивление перетеканию жидкости в элементах гидропривода способствует плавному включению сцепления.

Главный минус гидропривода – более сложный ремонт по сравнению с механическим.  Течь рабочей жидкости и попадание в систему гидропривода воздуха — вот, пожалуй, наиболее распространенные поломки, которыми могут «похвастаться» главный и рабочий цилиндры сцепления.

Гидропривод применяется в легковых автомобилях, а также на грузовых автомобилях с опрокидывающейся кабиной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector